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Introduction

The rapid increase in available computational power

over the last decade has enabled higher resolution flow

simulations and more widespread use of unstructured

grid methods for complex geometries. While much

of this effort has been focused on steady-state cal-

culations in the aerodynamics community, the need

to accurately predict off-design conditions, which may

involve substantial amounts of flow separation, points

to the need to efficiently simulate unsteady flow fields.

Accurate unsteady flow simulations can easily require

several orders of magnitude more computational ef-

fort than a corresponding steady-state simulation. For

this reason, techniques for improving the efficiency

of unsteady flow simulations are required in order
to make such calculations feasible in the foreseeable

future. The purpose of this work is to investigate pos-

sible reductions in computer time due to the choice

of an efficient time-integration scheme from a series of

schemes differing in the order of time-accuracy, and

by the use of more efficient techniques to solve the

nonlinear equations which arise while using implicit

time-integration schemes. This investigation is carried
out in the context of a two-dimensional unstructured

mesh laminar Navier-Stokes solver.

Implicit in any comparison of efficiency is a pre-

cise error tolerance requirement. For stringent accu-

racy requirements, high-order temporal discretization

schemes are well known to be superior to lower or-

Copyright _) 2002 by the American Institute of Aeronautics

and Astronautics, Inc. All rights reserved.

der (e.g. second-order) schemes, due to their superior

asymptotic properties. However, for engineering cal-

culations, where larger error tolerances (O(10 2) _

O(10-3)} are generally acceptable, second-order ac-

curate time discretizations are currently the method

of choice, and higher-order methods are generally

shunned due to their increased cost per time step. Re-

cently, the use of higher-order accurate implicit Runge-

Kutta schemes has been shown to produce efficiency

gains even for relatively coarse error tolerances using

a production structured-mesh Navier-Stokes solver)

In this paper, we perform a similar investigation

within an unstructured mesh setting. Additionally,

we investigate the efficiency of various non-linear so-

lution techniques for solving the non-linear problems

which arise at each time step for the various time dis-
cretizations considered. We consider three solution

techniques, namely, a non-linear multigrid method

which solves the non-linear problem directly through

pseudo-time-stepping, and two variants of an inexact

Newton scheme, where the linear system at each New-

ton iteration is partially solved using a linear multi-

grid scheme or a multigrid preconditioned GMRES

approach. Because high-order time discretizations

achieve high temporal accuracy with relatively large

time steps, thus increasing the condition number of

the non-linear problem, the use of efficient non-linear

solvers takes on additional significance in such cases.

Non-linear multigrid methods were originally de-

veloped for steady-state fluid flow problems and

subsequently adapted to unsteady flow problems. 24
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Newton-based methods have often been avoided in

this context due to the additional memory overheads

incurred by such methods and the difficulties in provid-

ing reliable initializations for non-linear convergence.

However, Newton-based methods have been shown

to offer the potential for higher computational effi-

ciency by avoiding frequem non-linear residual eval-

uations. 5 Furthermore, the disadvantages of Newton-

based methods are less relevant in the context of an

unsteady flow solver, where a close initial solution is al-

ways available from the previous time step, and where

memory considerations are often secondary to cpu-
time considerations.

In this paper, we illustrate the potential savings

achieved using higher-order time discretizations and

more efficient non-linear solvers for unsteady flow sim-

ulations on unstructured grids. We investigate the in-

teraction between the time-discretization scheme and

the non-linear solution technique as a function of tem-

poral accuracy a_id show that the beneficial effects are

multiplicative, producing up to an order of magnitude

savings in computational effort.

Base Solver

Spatial Discretization

For the purpose of comparison, an existing

two-dimensional unstructured multigrid steady-state

Navier-Stokes solver developed inSwas modified to sim-

ulate transient flows by incorporating various physical

time-stepping schemes. The flow equations are dis-

cretized using a finite-volume approach. Flow vari-

ables are stored at the vertices of the mesh, and control

volumes are formed by the median-dual graph of the

original mesh, as shown in Figure 1. A control-volume

flux balance is computed by summing fluxes evalu-

ated along the control volume faces, using the average

values of the flow variables on either side of the face

in the flux computation. The construction of convec-

tive terms corresponds to a central difference scheme

which requires additional dissipation terms for stabil-

ity. These may either be constructed explicitly as a

blend of a Laplacian and biharmonic operators, or may

be obtained by writing the residual of a standard up-

wind scheme as the sum of a convective and dissipation
term:

neighbors
1

Z 2 {F (wi) "4"-F (Wk)} .nlk
k=l

I
2 I Aik I (WL -- WR) (1)

where the convective fluxes are denoted by F (w), llik

represents the normal vector of the control volume face

separating the neighboring vertices i and k, and Aik

is the flux Jacobian evaluated in the direction nor-

mal to this face. WL and WR represent extrapolated

Fig. 1
meshes

flow values at the left- and right-hmld sides of the con-

trol volume face respectively. A matrix-based artificial

dissipation scheme is obtained by utilizing the same

transformation matrix I Aik ] as the upwind scheme,

but using this to multiply a difference of blended first

and second differences rather than a difference of re-

constructed states at control-volume boundaries. For

the calculations performed in this work, which involve

only subsonic flows, the matrix dissipation formed us-

ing only second differences has been used exclusively,

and the physical viscous terms for the Navier-Stokes

equations are discretized to second-order accuracy us-

ing a finite-volume approximation.

Median control-volumes for triangular

Temporal Discretization

Time is discretized in a fully implicit sense using

both multistep Backward Difference Formulas (BDF)

and multistage Runge-Kutta(RK) schemes. There are

two mathematical properties that are desirable of a

numerical integrator. The first is the "A-stability"

property which guarantees that all eigenvalues lying in

the left half of the complex plane will have an ampli-

fication of no more than 1, independent of the chosen

step size. Hence, the only restriction on the time step
with an A-stable scheme is the consideration of solu-

tion accuracy. The second is the "L-stable" property

which guarantees that eigenvalues approaching -_

are damped in one time step.

Multi step BDF formulas, and in particular the

second*order accurate BDF scheme (BDF2), are

widely used in computation of large scale engineering

flows. These schemes require only one nonlinear set of

equations to be solved at each time step. They suf-

fer, however, from not being self-starting, are difficult

to use with variable time steps, and are not A-stable

beyond second-order temporal accuracy.

On the other hand, multistage RK schemes are self-

starting, are easily implemented in a variable time-

stepping mode, and can be designed with A- and L-

stability properties for any temporal order. However,
these schemes require multiple nonlinear solves at each

time step, and hence have often been discounted as
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non-competitive compared to BDF schemes. One of

the objectives of this paper is to investigate the rela-

tive efficiencies of BDF and RK schemes in computing

time-dependent solutions to a given level of accuracy.

Consider the integration of the system of ordinary

differential equations (ODEs) represented by the equa-

tion,

dw

d-"_ = S (t, w (t)) (2)

where the vector S results from the spatial discretiza-

tion of the equations of fluid mechanics. The general

formula for a k-step BDF scheme can be written as:

k-1

W n+k _ Ct W n+i= - z_., ' + At_,S "+k (3)
i=0

BDF schemes require the storage of k+l solution lev-

els and the computation of one non-linear solution

at each time step. For k=2, the second-order accu-

rate (BDF2) scheme is obtained using the coefficients:

s0 = -4/3,(_1 = 1/3fl2 = 2/3. More details of these
standard schemes can be found in. 1,7

Runge-Kutta methods are multistage schemes and

are implemented as:

w _ = w" + (At)_ akjS (wJ), k=l,s (4)

j----1

w "+_ = w" + (At)_b_s (wJ) (_)
j=l

where s is the number of stages and u 0 and bj are

the Butcher coefficients of the scheme. Following the

previous work by Bijl et al. i we focus on the ES-

DIRK class of RK schemes, which stands for Explicit

first stage, Single diagonal coefficient, Diagonally Im-

plicit Runge-Kutta. The Butcher table for a six stage
ESDIRK scheme is shown in Table 1.

I cl = 0 0 0 0 0 0 0
c2 a21 as6 0 0 0 0

C3 a31 a32 a66 0 0 0

c4 a41 a42 a43 a66 0 0

05 a51 a52 a53 a54 a66 0

c_ = 1 bl b2 b3 b4 b_ a66

w "+1 bl b2 b3 b4 b5 a66

Table 1 Butcher Tableau for the ESDIRK class of

RK schemes with number of stages, s = 6.

In Table 1, c_ denotes the point in the time inter-
val, [t, t + At]. These schemes are characterized by

a lower triangular form of the coefficient table, thus

resulting in a single implicit solve at each individual

stage. The first stage is explicit (akl -- 0) and the

last stage coefficients take on the form akj = bj, thus

enabling equation (5) to be simplified as

w ".1 = w_=_ (6)

We use the following notation, RKxy refers to an

ESDIRK scheme which has x stages and yth order ac-

curacy. Bijl et al. i have compared these schemes

and found RK64 to perform well. The numerical val-

ues for the coefficients of this scheme are given in the

Appendix. More details in general about ESDIRK

schemes can be found in. s

Implicit Solution Technique

Both BDF and RKxy schemes require the solution of

a nonlinear system of equations. BDF schemes require

the solution of one nonlinear equation per time step.

In the case of BDF, a nonlinear residual, R (w), can

be defined from equation (3) and is given by:

R(w) - R(w '_+_)

w-+k (7)
"- At _kSn+k + SRCBDF

where the superscript on w has been dropped for the

sake of simplicity. SRCBDF is the source term inde-
pendent of w --_w n+k and is given by,

1 [_-l ]SRCBDF -- _-_ ]Z OqWn+* (8)

Li=O J

In the case of RKxy schemes, a nonlinear equation

arises at each stage of the time-stepping scheme and

hence requires more than one nonlinear solve per time

step. Again, a nonlinear residual, R (w) for each stage

of the RKxy scheme can be defined using equation (4)
as follows:

R(w) - R(w k)

w k (9)
----"At -- a/_S (W k) + SRCRK

where the superscript on w has again been dropped

for the sake of simplicity. Also_ SRCRK, is the source

term independent of w _= w k and is given by,

wn k-I

SRC K - At Z (10)
j=l

Hence, in both BDF and RKxy we are required to

obtain the solution of the nonlinear system of equa-

tions,

R(w) = 0 (11)

Three different methods are proposed for solving

equation (11) and their relative performances are stud-

ied. The three methods, in this paper, are henceforth

referred to as :

1. Nonlinear Multigrid (NMG)

2. Linear Multigrid (LMG)
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3. Preconditioned Generalized Minimal Residual

(PGMRES)

In NMG, a pseudo-time-stepping scheme is em-

ployed to obtain the solution of the nonlinear system

of equations, which is accelerated using a non-linear

full approximation storage (FAS) agglomeration multi-

grid method 5,6 In the other two approaches, an inexact

Newton solution strategy is used to solve the nonlin-

ear system of equations. The arising linear system of

equations is solved using iterative/Krylov techniques.

To accelerate convergence the linear system is left pre-

conditioned using an approximate inverse to the first-

order accurate Jacobian which in itself is employed as

an approximation to the Jacobian of the second-order

accurate discretization. The last two approaches differ

only in the methods used to solve the preconditioned

linear system of equations. LMG uses the Richard-

son's iterative method while the PGMRES uses the

Generalized Minimal Residual method developed by
Yaad and Schultzfl

Inexact Newton's Methods

To solve the non-linear system of equations R (w) =

0, Newton's method requires the solution of a series of

linear systems of the form,

[____R] tfw[k] = _R (w[k]) (12)
w[hl

where,

w [k+a] = w [k] + tfw [k] (13)

Let,

x - _wf_l; r - R (wE_l).,
OR

(14)

Hence, equation (12) now becomes,

Ax = -r (15)

Traditionally, there have been two main obstacles

to the use of Newton's method for large scale multi-

physics applications :

1. An initial guess inside of the radius of convergence

is required for Newton's method to converge. How-

ever, for unsteady problems, a good initial guess

is provided by the solution at the previous time

step. If the Newton's method does not converge,

then by lowering the time step one can get the

initial guess as close as necessary to the solution

at the next time level. In this paper, no difficul-

ties were encountered in the convergence of the

Newton iterations for all the time steps used.

2.

particularly exacerbated in 3D mad while using

higher-order spatial discretizations which are not

confined to the nearest neighbor stencils. This

problem is overcome by the use of Jacobian-free

methods to solve the linear system of equations.

However, additional memory is still required to

store the first-order Jacobian for the precondition-

ing operation, and the various Krylov vectors for

the GMRES scheme. On the other hand, tim use

of additional memory can be rationalized if this

produces substantial gains in cpu time, particu-

laxly for unsteady flow simulations where cpu time
is the dominant concern.

Additionally, in order to improve the computational

efficiency of these methods, we use an inexact New-

ton's method m where the arising system of equations

are not solved exactly. In this paper, we employ a

very simplistic method where the number of iterations

carried out by the underlying iterative linear solver is

held fixed. In it's exact form, Newton's method pro-

vides quadratic convergence. However due to all the

approximations employed by the solution method in

this paper, this rate of convergence is not achieved.

Preconditioned Inexact Newton's Method

In order to achieve rapid convergence of the lin-

ear problem at each Newton iteration, preconditioning

methods are used to cluster the eigenvalues of the sys-

tem. We adopt the approach of left preconditioning in

order to achieve this desirable distribution of eigenval-

ues. The preconditioned system can be written as:

7_gAx = -PArr (16)

We make the following comments on the precondition-

ing:

• The preconditioner, T_N, is looked upon here as

an operator as opposed to a matrix. Hence, 7_A;,

may or may not be able to be written as a matrix.

• The preconditioner must be chosen as close as pos-

sible to A -a so that _OvA _ Z, where 2: is the

identity operator.

• Since, each step of the Newton's method, equa-

tion (12), moves w[ k], towards the solution, w*,

of R (w) = 0, any operator which produces a cor-
rection 5w[ _] = x to advance w [k} towards w*

would serve as a reasonable preconditioner.

• Based on the above fact, single or multiple cy-

cles of the nonlinear multigrid method discussed

in the earlier subsection could be used as a pre-

conditioner. However, this is computationally in-

efficient as we do not recognize the fact that we

are now solving a system of linear equations.

Construction and storage of the Jacobian ma- Keeping in mind the above observations we now pro-

trix, A becomes prohibitive. This problem is pose a better preconditioner, 79A;. We first choose
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PN = _-1, where A is a matrix approximation to tile

Jacobian, A. Considerations governing the choice of

would be,

1. Storage requirements for A must not be pro-

hibitive. Preferably it must use less space than

the space needed for A or else there would be no

space gain in using Jacobian-free methods.

2. The inverse of A must be simple to calculate or

approximate. If one is able to compute an ap-

proximate inverse to A fairly easily using iterative

methods, this new operator, "P_v = A would

serve as an appropriate preeonditioner. The two

tildes are used to symbolize the fact that there

are two approximations involved in the definition

of the P:¢,

(a) A which is an approximation to the Jacobian,

A

(b) An approximation in computing the inverse

of

In this paper, we choose A to be the Jacobian of the

first-order accurate, nearest neighbor discretization of

the nonlinear set of equations. Hence, the storage of

requires substantially less memory than that of the

full Jacobian A of the second-order accurate scheme.

_-1 is computed approximately using several iter-

ations of a linear multigrid method. This particular

multigrid method can be viewed as the linear ana-

logue of the non-linear FAS agglomeration multigrid

scheme described in the NMG method. This approach

has been previously described in detail in reference. 5

In this particular approach the coarse level approxima-

tions to the Jacobian are obtained taking the Jacobian

of the Galerkin projection of the (frozen) fine grid op-

erator as:

0 (l_Rhl_) (17)
AH = 0--_H

as opposed to the more traditional linear multigrid

Galerkin projection:

.. ORh h = I_A.l_ (lS)
AH ---- I h _ H

where I_ is the restriction operator and I_ is the pro-

longation operator. This approach was chosen purely

for convenience, as the terms in equation (17) are read-

ily available. The smoother on each grid was taken as

a block diagonal Jacobi solver.

Linear Multigrid (LMG)

In the method referred to as LMG, the linear multi-

grid preconditioned system arising at each Newton

iteration is solved using a single Richardson iteration.

In order to solve the system,

P, vAx = -Peer (19)

we define the splitting

P_vA = Z + Af (20)

The resulting iterative scheme is defined as,

Zx ('+1) = -PNr - ]¢'x (m)
(21)

Z6x (") = -P_r - PA:Ax _')

As indicated earlier, since we are required to solve

equation (19) only approximately, we carry out only

a single Richardson's iteration. Assunfing x (1) = 0,

equation (21) reduces to,

6x _1} = _ parr
(22)

x (2)= x (1)+ 6x (I)= 6x 0) = -Pxr

Hence, we have

6w [k]= x (2)= -PA:r (23)

Equation (23) illustratesthe correspondence of this

scheme to a Newton's method in which the first-order

accurate Jacobian is used along with a second-order

accurate residual.

Preconditioned Generalized Minimal Residual

(PGMRES)

Having presented the LMG scheme as a precondi-

tioned Richardson iteration, the PGMRES scheme can

similarly be described as the equivalent scheme ob-

tained when the single Richardson iteration is replaced

by a GMRES Krylov subspace iterative approach. In

this method, we use GMRES to solve equation (16)

in a matrix-free Newton-Krylov fashion, making use

of the preconditioner, P,v, which is based on a linear

multigrid. The matrix-free implementation of PGM-

RES requires the computation of the product, P.vAx,

which is approximated using a first-order Taylor series

expansion as,

(wt l+ - p -n (will)
PNAx =

' (24)
PazR (w [_1 + ex) - T':cr

£

where x is some unit vector and e is a number chosen

close to machine round-off. We use the restarted form

of GMRES with a fixed number of search directions.

While increasing the number of Krylov vectors accel-

erates convergence, storage and cpu time increase with

the number of search directions. The optimal number

of search directions is therefore determined experimen-

tally.

Validation of the Temporal Scheme

Numerical experiments have been performed to de-

termine the observed order of accuracy of the vari-

ous time-integration schemes. The test problem cho-

sen for this purpose consists of the unsteady laminar
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flow around a two-dimensional circular cylinder at a

Reynolds number of 1200 and a Mach number of 0.2.

The initial flow is symmetric with zero lift. As the

wake behind the cylinder starts to grow, it becomes

unstable arid begins to shed vortices from alternate

sides of the cylinder. The computational grid is shown

in Figure 2. The far-field boundary is a circle con-

centrie with the cylinder and diameter given by 40D

where D is the dia_mter of the cylinder. A close up of

the mesh around the cylinder is shown in Figure 3

at an intermediate time is shown in Figure 5.

.:" ',, ., .'*'/

1 ,: ": *

0.S :' -. ."

r.3- 0 :" : ". :"

-0.5 " ."

-1 ....... '_ ..:

1 1.5 2.5 3 3.5 4 4.,5

Nondlmer_onal Time

Fig. 4 Variation of CL with non dimensional time

Fig. 2 Computational mesh for circular cylinder

Fig. 3 Computational mesh in the region around
the cylinder

Time is non dimensionalized as Ut/D where U is

the free stream velocity and D is the diameter of the

cylinder. The initial condition for the various studies

was obtained by simulating the limit cycle behavior

for around 10 shedding cycles using a relatively small

time step. Using At = 0.025, the Strouhal number was

calculated to be 0.2469. The variation of CL with time

is shown in Figure 4. A plot of the density contours

Fig. 5 Density Contours calculated using a time
step of 0.025

In order to determine the order of accuracy, the test

problem was solved using the same initial condition

but with different time steps. The time interval of the

study was approximately 1¼ shedding cycles. The so-
lution at the end of time interval is assumed to have

accumulated the temporal error. Integral measures

such as lift on the body, drag due to pressure forces

and pitching moment of the body were then compared

as follows to determine the order of accuracy. Let GAt

denote the integral measure being compared using a

time step At, while Gexact denotes the exact solution.

We do not know Gexact but based on the order of accu-

racy n of the scheme, we expect the following behavior:

Gz_l = Gexact + CI (At) T_+ Higher Order Terms

(25)

where C1 is a constant. By subtracting from equation

(25) a similar expression for G T and neglecting the
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higher-order terms, we can obtain the following rela-

tion,

GAt -G_'-_ = CI (I + I) (At)" (26)

= C2 (At)"

where C2 is another constant. Equation (26) can be

used to determine the order of accuracy of the scheme

which can then be compared with the expected order

of accuracy based on theory.

The order of accuracy was verified for two ESDIRK

schemes ( RK64 and RK43) and the second-order BDF

(BDF2) scheme. The nonlinear systems which arose

were converged until the maximum density correction,

[ Ap [max < 10 -l°. This ensures that the "iteration

error" is negligibly small relative to the discretization

error. Figures 6, 7 and 8 show the detailed refinement

study for the RK64, RK43 and BDF2 schemes respec-

tively. It can be seen that all the integral measures

yield nearly the same quantitative conclusions. The

anomalous behavior in Figure 8 is likely due to the

choice of a large time step. It is also seen that the

computed order of accuracy is close to the expected

order of accuracy. For example, Figure 6 shows that

the computed order of accuracy for the RK64 scheme

is 3.8938 while the expected order of accuracy is 4.

10 -1

10 4

<

f_l 10-*

o

10 -7

• S

10"* 10 -_

At

Fig. 6 Verifying order of accuracy of RK64

10 °

Parameter selection in the Linear

Multigrid (LMG)

The inexact Newton methods contain various pa-

rameters which must be chosen judiciously in order

to optimize the overall run-time of these methods. For

the LMG scheme, the parameters to be chosen include:

1. Number of linear multigrid cycles carried out in

Pz

2. Number of smoothing iterations carried out on

each grid of the multigrid.

10 °

10 -I

10 -_

&
I

C_ 10-_

10"4

91

Fig. 7

I0°

10-1

10 4

0
I

(.._< 10 <

lo _

10- _

/i(

Verifying order of accuracy of RK43

72

10 o

10- ,,,'J , ....... ' , " '

lO "_ to "_ 10-' lo 0

At

Fig. 8 Verifying order of accuracy of BDF2

Increasing either of these parameters would make P_-

a better approximation to _-l. Figure 9 illustrates

the effect of increasing the number of linear multigrid

cycles used in P_,. All the results shown in this section

and the next are carried out using the BDF2 physical

time stepping scheme and a At = 0.05.

We observe the following :

1. The rate of convergence slows down as the non-

linear residual decreases. This is due to the in-

exact solution of the linear system described by

equation (16) at each Newton iteration, as we use

only a single Richardson's iteration to solve equa-

tion (16). Hence, the quadratic convergence ex-

pected of exact Newton's methods is not achieved.

2. Increasing the number of linear multigrid cycles in

79.,V can only increase the non-linear convergence

by a finite amount, and eventually asymptotes to

a maximum rate. This is due to the fact the pre-

conditioner Pig is based on a first-order Jacobian,

which even if inverted exactly does not correspond

to the inverse of the exact Jacobian, A
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-2

-4

1
or -8

!
c -10

_ -12

-14

-16

4 MG cycles, 5 Smoolhtnolgdd
: 3 MG cycles, 5 Smoothing/grid

_ 2 MG cycles, 5 Srnoo_ing/_ --

_. 1 MG cycles, 5 Smoothing/grid ......

L I i I _" _ i"

10 20 3o 40 50 60 70 80

Newton Iterations

Fig. 9 Effect of changing the number of linear

multigrid cycles in PX of LMG

Since, the ultimate goal is to minimize the runtime

required to converge the equations, R (w) = 0, to a

given tolerance level, we plot the reduction of the resid-

ual against runtinm for different choices of the number

of linear muitigrid cycles. It can be seen from Figure

-2 s MG c_s, s s_r_r_
4 FAGcycles, 5 Smoothing/grid .........

-4 i 3MGcy:_ sS._o_n_gr_
t.. ' 2 MG c_, 5 Smoothlng/grid --

i -,6 _ _• ", 1 MG c)¢les, 5 Smoothing/grid -

-14 _

-16
0 10 2O 3O 40 50 6O 70 80

CPU Time

Fig. 10 Effect of changing the number of linear

multigrid cycles in P_¢ of LMG on the runtime

10 that the use of 2 linear multigrid cycles in T'_- is

computationally most efficient for the range of error

tolerances to which the nonlinear equations are con-

verged.

Figures 11 and 12 show the effect of performing dif-

ferent number of smoothing iterations on each grid of

the multigrid. As expected, Figure 11 shows that the

number of Newton iterations decreases with increase

in the number of smoothing iterations.

The study indicates that the use of 5 smoothing

cycles on each grid, while using two linear multigrid

cycles, results in a computationally optimal precondi-

tioner, P2¢, for the problem under consideration.

Parameter selection in PGMRES

Having selected all required parameters for the lin-

ear multigrid preconditioner, T'_-, the remaining pa-

razneter to be determined in the PGMRES method

2 MG cycles, 4 Smoothing/grid --
--4 2 MG cycles, 5 Smoothing/grid

= 2 MG cycles, 6 Smoothing/grid

- .....o -12

-14

-16 , , , _ i ,
0 10 20 30 40 50 60 70 80

Newton Immtlons

Fig. 11 Effect of changing the number of smooth-

ing iterations carried out on each grid of the multi-

grid

o

-6

-6

-lO

-12

-14

-16
o lO

2 MG cycles, 4 Scnoothtng/grld..........
2 MG cycles, 5 Smoothklg/gdd

_ i 2 MG cycles, 6 Smoothtng/gdd --

211 3O 4O 5O 6O 3'0

CPU Time

Fig. 12 Effect of changing the number of smooth-

ing iterations carried out on each grid of the multi-

grid on the runtime

is the number of search directions. Increasing the

number of search directions provides a more accurate

solution to the linear system, which arises at every step

of the Newton's method. Thus, the Inexact Newton's

method approaches the Exact Newton's method as the

number of search directions is increased.

Figure 13 shows the effect of increasing the number

of search directions on the number of Newton itera-

tions required to converge to the solution of R (w) --

0. It can seen that the effect of increasing the search

directions is more pronounced as the nonlinear resid-

ual becomes smaller.

However, increasing the number of search directions

by one incurs the following additional computational

overhead :

• A single evaluation of the nonlinear residual on

the fine grid.

• A single evaluation of the preconditioner, "P_¢.

• Additional matrix-vector and vector-vector prod-

ucts required to compute the extra search direc-
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Fig. 13

" ' ' ! ,_arch Direction 1
2 Sea_h DireCtion .....
5 SeexChDirection -

10 Search D_reclion-

ii
"-4

i -- i i i

10 20 30 40 50 60 70

New¢_ Itera_ons

Effect of changing the number of search

directions in PGMRES

tion and the optimal solution, x (m} in a larger

Krylov subspace.

• Additional storage for the extra search direction.

Hence, the choice of the number of search directions

was decided based on computational efficiency. Figure

14 plots the variation of the nonlinear residual against

runtime for different choices of the number of search di-

rections. It was determined that the use of five search

directions was computationally most efficient.

-2 I ,_earch Direct_n '
2 Search Direction .........

..4

_ -8

!
t 10
o -12

-14

- 16 , _ i , ,_ ..........
0 10 20 30 40 50 60 70

CPUTime

Fig. 14 Effect of changing the number of search
directions in PGMRES on the runtime

Runtime comparison of different
schemes

In this section we examine the computational effi-

ciency of two time-discretization schemes, RK64 and

BDF2 as a function of accuracy levels. We simultane-

ously investigate the relative performances of the dif-

ferent implicit solution techniques discussed in this pa-

per. Finally, we show that the combined improvements

in efficiency obtained by using higher-order schemes

and better nonlinear solvers such as LMG can result

in up to an order of magnitude speedup in overall so-

lution efficiency.

In order to compare the different schemes, we com-

pare the ruutimes required to advance the solution

from an initial time Ti to a specified final physical

time T/, given an error tolerance in the final solution.

In this study, we assume the error in the lift coeffi-

cient, CL, to be a good measure of the integral error

in the final solution. To measure the error in CL, the

numerical solution obtained using the RK64 scheme

and At = 0.0125 was assumed to be numerically ac-

curate with zero error. Finally, we choose 3 error

tolerances, 10 -_, 10 -3 and 10 -4, which we deem to

be representative of engineering error tolerances, and

make a detailed comparison of the different schemes.

We choose a time interval T/-Ti = 1, noting that the

ratios of the runtimes of the various schemes should

remain invariant with arbitrary choices of the time in-

terval.

The physical time step, At, chosen to advance the

equations to T! depends on:

1. The physical time-stepping scheme, in this case

either BDF2 or RK64.

2. The error tolerance level

Figure 15 plots the variation of the error in CL for

the two different physical time-stepping schemes. In

order to obtain Figure 15 the nonlinear equations at

each time step were converged such that the rms error

in the density residual was less than 10 -l°, in order to

avoid any contamination of the temporal error. The

circle symbols in the Figure indicate the time steps

used in the following study for both schemes to achieve

the three different prescribed error tolerances.

1oo

lO"t []OF

so4

1o_

%-' ....... ;o-' ....... ;o-, ,e

Fig. 15 Comparison of time steps required for
BDF2 and P_64 schemes

It can be seen that for the range of error tolerances

considered BDF2 requires a much smaller time step

than RK64. Furthermore, as RK64 is fourth-order

accurate in time, the error decreases faster with a de-

crease in time step, making it more efficient at lower

error tolerance levels.
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Scheme ] At I NMG I LMG I pGMRES
CL Error = 10 -2

BDF 0.01842 15.55 5.24 9.00

RK 0.24193 I 121"56 I 39.52 I
CL Error = 10 -3

BDF 0.005825 12.45 4.59 9.01

RK 0.122047 J 131.4 143.84[
CL Error = 10 -4

BDF I 0.001846 12.49 5.54 8.76

RK I 0.067285 147.14 44.91

Table 2 Runtimes required for carrying out 1

physical time step using the different nonlinear
solvers, where time steps are chosen based on the
given error tolerances on CL

Hence, the choice of the physical time-stepping

scheme affects the overall efficiency of the simulation

in three manners:

1. The number of time steps required to integrate to

Tf, for a given temporal accuracy

2. The total number of non-linear solves per time

step

were only converged to these levels. In these fig-

ures, however, convergence down to machine accuracy

is shown to illustrate the overall convergence behav-

ior. These examples all utilize the nonlinear multigrid

(NMG) scheme.

-4

-10

-12
$

-14

-16
0

t

' CI er_,r = l._,Delta ,_=0.018_2 '
G error= 10.;,Deltat=0.005825

C_ error = 10_,Delta t = 0,001846

lo _ I0:__ ...... Io-2

.........__.j,::::::..-::: :5:___

i i i i , i i
20 40 60 80 100 120 140

CPU Time

Fig. 16 Comparison of the convergence of the non-
linear residual of RDF2 schemes for a single time
step using NMG, where At's are computed based
on the given error tolerances on CL

3. The condition number of the non-linear systems

to be solved. The non-linear systems produced

by the RK scheme are generally more difficult to

converge due to the larger time step involved with

the higher-order scheme.

We now try to quantify the efficiency gains by using

higher-order schemes and a more efficient implicit solu-

tion technique. A major contributor to the inefficiency

of implicit methods is solving the nonlinear systems

at each stage/step to inappropriate sub-iteration tol-

eraJmes. If the nonlinear system is solved to lower

tolerances, the additional work does not increase the

overall solution accuracy. We do not attempt to an-

swer this question in any detail, but assume that it is

sufficient to converge the nonlinear residual to 6 or-

ders of magnitude less than the error in CL. This

level was determined through numerical experiments,

by setting various convergence levels and measuring

the final temporal error. While the ratio of residual

convergence to error in CL appears relatively large,

this is an artifact of the fact that these quantities axe

inherently scaled in different manners, since CL repre-

sents a global integrated quantity, as opposed to the

average flow field residuals.

In Table 2 we present the runtimes for the differ-

ent combination of schemes. In Figures 16 and 17

we show the nonlinear convergence characteristics of

BDF2 and the second stage of RK64 for the three dif-

ferent CL error tolerances considered. Note that the

required levels of convergence are more stringent for
the smaller time steps, as shown by the bar symbol on

each line. In the actual computations, the residuals

-4

I:iiiiii:i.....

i-
-10

-12

-14

-16

CI error = i{_'2,[::_ t=0.2_,193 .........
C.qerror = 10:,Delta t=0.122047
C terror = lOb, Delta t=,0.067285

-. "i-... "--..

-18
0 5O 100 150 2OO

CPUTime

Fig. 17 Comparison of the convergence of t he non-
linear residual of RK64 schemes for the first stage
of a single time step using NMG, where At's are

computed based on the given error tolerances on
CL

We observe the following :

1. Faster convergence for smaller error tolerances, as
At is reduced.

2. Slower overall convergence for RK64 relative to

BDF2 for similar error tolerances, as larger time
steps are used in RK64.

3. Similar behavior is observed for the other two

methods (LMG, PGMRES) as well.

In Tables 3 and 4 we quantify the efficiency gains

obtained by shifting from BDF2 to RK64 for the two

different nonlinear solvers, NMG and LMG respec-

tively. The numbers in the different columns are ratios
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CL
Error

10-2

10 3

10-4

Table 3

CL
Error

10-2

10-3

10-4

Table 4

Runtim .... for Overall
RuntlmeR/_,

At_w I time step Gain

13.13 0.128 1.68

20.95 0.095 1.99

36.45 0.085 3.1

BDF2 to RK64 Speedup factors for NMG

AtBDF

13.13

20.95

36.45

RuntimenK for Overall
SuntimeB v F

1 time step Gain

0.133 1.75

0.105 2.2

0.123 4.5

BDF2 to RK64 Speedup factors for LMG

of the corresponding quantities used in RK and BDF

respectively. The CPU time for a given time step is

an order of magnitude larger for the RK schemes, and

this ratio varies slowly with the increase in accuracy.
This result is a function of the number of non-linear

solutions required per time step, the relative stiffness

of each non-linear problem, and the degree to which

each system must be converged to maintain overall ac-

curacy. However, the ratios of time steps between the

two schemes is large and increases rapidly for higher

accuracy levels, thus making the RK scheme more ef-

ficient overall, particularly at the more stringent error

tolerances.

In Figure 18 we plot the variation of the nonlinear

residual for a single time step of BDF2 using different

nonlinear solvers as a function of the number of New-

ton iterations for LMG and PGMRES, and as a func-

tion of nonlinear multigrid cycles in the case of NMG.
The inexact Newton methods exhibit faster conver-

gence rates per iteration as compared to the nonlinear
multigrid NMG method. Furthermore, PGMRES is

seen to outperform LMG as well, due to the fact that

PGMRES produces a more accurate solution of the

preconditioned linear system, equation (19) at each
Newton iteration.

-2 .=
NMG' --

LMG ........

-4 , ' PGMRES ..........

-8 .'_.... ; ...... .......... -............_..........

i -10

-14

-16 ' ' ' ' '

0 20 40 60 80 100 120

Newton Iterations or Nonlinear multlgricl cycles

Fig. 18 Comparison of the convergence of the
nonlinear residual of BDF2 schemes using the 3 dif-
ferent nonlinear solvers

In Figure 19 we plot the variation of the nonlinear

residual for a single time step of BDF2 using different

nonlinear solvers as a function of CPU time. We make

the following observations:

1. LMG is computationally more efficient than other

schemes as it performs fewer nonlinear residual

evaluations.

2. Although PGMRES has faster convergence in

terms of Newton Iterations, the additional cost

of each Newton iteration outweighs the gain in

non-linear convergence.

_-10 i

-12

NMG--
LMG .....

PGMRES •

o 20 .,o ;o ,oo
CPU Time

Fig. 19 Comparison of the convergence of the
nonlinear residual of BDF2 schemes using the 3 dif-
ferent nonlinear solvers against runtime

Finally, in Figure 20 we show the runtimes required

to reach 7'/ - T, = 1 using the different schemes,

versus the error tolerance level in CL. Figure 20

clearly indicates that the commonly used combination

of BDF2 and nonlinear multigrid (NMG) exhibits the

lowest computational efficiency for this problem. The

most efficient solution strategy is obtained using the

RK64 temporal discretization with the linear multi-

grid(LMG) solver, and these gains increase for higher

accuracy levels.

In Table 5, we emphasize the overall gains obtained

in shifting from the BDF2-NMG to the RK64-LMG

solution strategy, as a function of the temporal accu-

racy. The gains obtained between the RK scheme and

the BDF scheme and the gains obtained between the

various non-linear solution strategies are multiplica-

tive, producing a larger overall gain than for either

method used alone. This compounded efficiency gain

increases with solution accuracy, yielding up to an

order of magnitude improvement for the highest ac-

curacy considered.

Conclusions

Higher-order implicit multi-stage Runge-Kutta

schemes have been shown to produce higher accuracy

at reduced cost as compared to BDF2. Additionally,
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Runtimes required to reach Tf = 1 us-Fig. 20

ing the different schemes plotted against the error

tolerance level in CL

CL At RuntimeBDK for Overall

Error _ RuntlmeR ,,_1 time step Gain

10-2 13.13 0.393 5.16

10-3 20.95 0.284 5.95

10-4 36.45 0.278 10.14

Table 5 BDF2-NMG to RK64-LMG Speedup fac-

tors

inexact Newton solution strategies have been shown

to be well suited for solving the non-linear systems

which arise from temporal discretizations at each time

step. The efficiency gains of both approaches are mul-

tiplicative, resulting in large potential savings when

both methods are used in tandem. The combina-

tion of RK64 with Linear Multigrid method (LMG)

worked very well for the error tolerances considered.

The preconditioned GMRES (PGMRES) algorithm

studied in this work provided the fastest asymptotic

convergence among all methods but was found to be

non-competitive due to the slower initial convergence

of the method when only partial convergence of the lin-

ear systems is required. In cases where more accurate

linear system solutions are required, PGMRES may

be more competitive. Overall efficiency of the time-

integration schemes is greatly affected by the degree

to which the non-linear systems at each time step are

converged. The levels of convergence adopted in this

work were determined a posteriori, and are therefore

not predictive. A more exact quantification of the re-

quired convergence levels will be required in order to

construct efficient time-dependent solution strategies.

Future work will also include the use of temporal

error estimation techniques coupled with dynamically

adaptive time-step selection.
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Appendix : Butcher Coefficients for RK64

The Butcher coefficients for the RK64 scheme used in

the paper are given in the table below. RK64 is a

6 stage with scheme, with 4 *h order accuracy and 5

implicit stages. As in all ESDIRK schemes, bj = asj

0 0 0 0 0
0.25 0.25 0 0 0

0.137776 -0.055776 0.25 0 0
0.144636866 -0.2239319076 0.4492950416 0.25 0

0.098258783284 -0.59154424282 0.8102105383 0.28316440571 0.25

0.15791629516 0 0.18675894052 0.68056529531 -0.275240531

0
0
0
0
0

0.25
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